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Main result:
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« Two different amplitudes in QCD are equal at leading power in
* We prove this rigorously to all orders in perturbation theory
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Perturbative QCD

- Why is perturbative QCD useful at all?

\

|
Asymptotic freedom — Universal

* agis small at high energy do =[PDFs] Ferturbative
* Perturbation theory works x [hard process]
d X [soft/collinear radiation]
B = M@Oés <0 x [hadronization] N,
\ ) / (Re)summable
Y
Determined by \ small )
UV properties of QCD Y

Determined by
IR properties of QCD



Why is proving factorization so hard?

1. Non-perturbative effects =~
. . QCD
» To show factorization up to Q or
* No access to non-perturbative scales in perturbation theory

2. Perturbative effects

» Infrared singularities (pinch surfaces) complicated
» Gauge dependence subtle
« Off-shell modes (Glauber gluons)

3. Hard even to formulate theorem

» Precisely what is supposed to hold?
« Gauge-invariant and regulator-independent formulation?
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Historically, four approaches

1. OPE approach

2. Pinch surface approach

3. Amplitude approach 4. Effective field theory

approach



Approach 1: Operator Products

Deep inelastic scattering » Use OPE around =0 to expand at large Q2
* Physical region has w>1
Im(w)

2P°q/\

W = Q 5 Photon momentum

« OPE is possible because we can analytically continue
« We know analytic structure because

1. Inclusive over final states

2. Analytic structure of two-point function J,(z)J,(0) known exactly
» Analytic structure for more complicated processes not known exactly
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Approach 2: Pinch surfaces

Collins, Soper, Sterman:
pinch surfaces factorize

Fig. 5.11. Cancellations for a complicated garden. The shaded area is the soft subgraph. The solid lines
are tulip boundaries. Addition of tulips with new boundary portions along one or more of the dashed

Collins & SOper, 1981 or dotted lines produces cancellations.
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Fig. 5.7. A two-tulip garden.



Approach 2: Pinch surfaces

Hard region f ~ Soft region: all particles have " — 0

(drawn as points) p

Jet regions: all particles have
NN
p; = Gp

.

« All momenta zero or exactly proportional to some external momentum
» Sidesteps soft/collinear overlap region (zero bin)
» More work needed to factorize finite-momentum amplitudes

» Factorizes hard from jet/soft — does not factorize jet from soft

* Do not provide operator definitions
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Approach 3: Amplitudes Collinear

Primary goal is practical formulas (e.g. for subtractions):

Tree-level One-loop

pit+k
'/ P1 P1 P1
s

./\/l—>./\/l><77ab !

D2 P2 P2

DGLAP splitting functions (1977) s P q
b1
1 3 Tk
Py (2) =Cp |(1+27) ll—z]++§5(1_z)] Th
P2 P
» Leading order splitting functions universal P2

(process independent)
+ Splitting functions for PDF evolution defined to all orders

« IR divergent at 1-loop
* Relevant diagrams
are gauge and process-dependent

« Bern and Chalmers (1995): collinear universality proven at 1-loop
« Kosower (1999): universality proven to all orders at leading color (large N)
* No all-orders proof in QCD (until now)
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Approach 3: Amplitudes Soft

_ x (ky-- kYT YN0
}{ ] X < RV

Y;T(SL’) = exp (z’g/o dsn; - A(z" + snf) e

Soft gluons see hard particles as classical sources

Wilson lines

« Wilson line picture does not disentangle soft from collinear
« Universal soft current conjecture (Catani & Grassini 2000)

(a| M(q,p1, .-, pm)) = "(q) Ji(q.€) | M(p1,....pwm)) [1+ O(g8)] ,

Computed in dim reg at 1-loop (Catani & Grassini 2000)

@:i-@x-@r €@ -

(c)

o e~ €@ @~
« Soft current computed |n dim reg at 2-loop (Duhr & Gehrmann 2013, Zhu & Li 2013)
* Required for NNLO subtractions and automation

* No operator definition of J « all orders universality unproven (until now)



Approach 4: Soft-Collinear Effective Theory

» Assigns scaling behavior to fields
« Expand Lagrangian to leading power

L= i =p)= mD+—%np
L=ipPyp —F

+Z W —p-ayeg [gn Anq-i-gAiq_pr-l- pJ_ A pJ_ n-Anq_pr ﬁgn,ﬁ

pd
+ 2-gluon + 3-gluon + ... + O(\)

Advantages

« Clarifies universality
« Employs powerful renormalization group methods
» Parameterizes power corrections

Disadvantages

 Feynman rules messy
* Field scaling is gauge-dependent and unphysical
« Zero-bin subtraction frustrates true continuum limit
* How do we know that modes aren’t missing?
* (soft-collinear messenger modes? Glauber modes?)



FACTORIZATION
SIMPLIFIED




A precise statement of factorization:

o o (X0 (X Whe|0) .
<X|O|O> - C(Sz]) <O|}/1TW1 |0> <0|W;{7YN|O> <X8|Y1 YN|O>

* Two different amplitudes in QCD are equal at leading power in finite kinematic ratios
* We prove this rigorously to all orders in perturbation theory Pi " b

QZ
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Jet amplitudes
Matrix element in QCD 4 \

¢ ' X W5 10 e 0 WT X hncp
Mfz' chihj(Sz'j) \ 1|¢ T 1| > < | ﬂ'_N> <X8f|)/1T?N |X;;>c1---cz\f
/ N\ O 107 (O WY n |0)
Leading power " nite hard amplitude '\ /‘ Soft amplitude

in momentum scaling

N

Advantages of this approach: Y J

« Gauge and regulator independent
« Soft, Collinear and Soft-Collinear factorization rigorously proven at amplitude level
 Combines pinch analysis (reduced diagrams), amplitudes and SCET—j

Simplifies derivation of SCET

Applies to entire amplitude, not just IR divergent regions

 Scaling of external momenta is physical ()2
* No discussion of field scaling is required
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Connection to amplitudes

(X9 W [0) (0] W) | X )" ™
(0] Y, W |0) 0| WV x |0)

Mfi = Cc,h (Szj) <X§‘}/1T7N ’X;'>Cl-..CN

1 soft emission
S \(\\ i
/‘ \a(\ G(\?“e(\ JHh— gr <€M(p); a| Y1TY2 |O>
O o © ahh/ -

(M) = T My;) S~_Normalized to

' H 0 emissions
< \/?\/lﬂ (p1| YW, |0> <p2| W2T¢ |0>

=C(s
N A AURCIAAD

Soft factorization

» Gives operator definition of soft current and matrix element

« Gauge invariant and regulator independent
* Previous results only in Feynman gauge with dimensional regularization

« Generalizes Kosower’s large N proof to finite N
« Gauge invariant and regulator independent
» Operator definition of splitting functions for any process

Collinear factorization



Connection to SCET

(1322

* Give any state in [X> the quantum number
* Give any state in |X_> the quantum number “s”
 Introduce gluon and quark fields which can create and destroy these states

£eff5£1+"'£m+£8
N

Then |dentical copies of QCD Lagrangian
(X1 Xon X1 m|0) £aen ~ (X1 [hi W0 -+ (X [W,, 00 [0) (X [V1 -+ Yi10) £

= <X1 e ’XmX8|QZ1W1Y1 T YmW;l¢m|0>£eff

\ J
Y

Now a single operator in an effective theory

« This formulation is most similar to Luke/Freedman SCET (2011)
» Equivalent to label SCET [Bauer et al 2001] and multipole SCET [Beneke et al 2002]
at leading power

» Provides operator definition of zero-bin subtraction |
\/\Zi = ﬁctr (0| W1Y; |0)
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Outline of proof

1.
2.
3.

Establish power counting
Separate soft-sensitive gluons from soft-insensitive ones
Prove “reduced diagram” structure at leading power in physical gauges

Momenta
unrestricted

Prove soft collinear decoupling

any r

y Ts
(X1 Xn; X,|O10) &7 (X, Yy - Y [0)

X ¥
(0] Y] [0) --- (0] YN |0)

Prove gauge-invariant formulation

X[ |0)er (0| T | X )N s
Mf’igCCihj(Sij)< 1|¢ 1| > < | N¢| N> <XZ|Y1TYN|X;>

(0] Y, W7 10) 0] WY x [0)




Summary

« Matrix elements of states with only soft and collinear momenta factorize:

Xa| W [0) (O] Wi | X) "V iy
Mis 2 Cop (5 TN WO SOOIl 2 gyt gy

(0] Y, W1 |0) 0| WV x |0)

« Generalizes Collins-Soper-Sterman pinch analysis
* Works for amplitudes with nonsingular momenta
« In addition, soft and collinear modes factorized

* Defines and proves factorization of amplitudes
« gauge-invariant and regulator-independent definition for Catani-Grassini soft current.
» Collinear factorization proven to all orders
« Soft-collinear factorization proven to all orders
Eeff5£1+"'£m+£s

« Easily written with an effective Lagrangian:
<X1 T XmXS|¢1 T ¢m|O>EQCD ~ <X1 e XmeWlW1Y1 T YmWrr];ﬂbm‘wﬁeff

« Equivalent to SCET Lagrangian at leading power
* Avoids having to fix a gauge

» Avoids having to assign scaling behavior to unphysical fields
» Operator definition of zero-bin subtraction
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" . “ | ;
Future directions g L
2@ — — — Bk -®- - -
N LN
o 7 1 Glauber
* Proofs of factorization dramatically simpler B %\ ft LN
» Can forward scattering be understood the same way? . ) 1 :é
« Add Glauber modes to reduced diagrams? PN *
* Possible with our off-shell reduced diagrams wff g k f\ | py—collincar
« Cleaner understanding of BFKL L/ \‘/
k2 ~k-py o b

» Leading power derivation, to all orders?

More exclusive observables?
* Universality of PDFs?

» Practical applications

» Jet physics at subleading power?
+ Resummation of subleading power corrections has never been done

» Universal formulas for coefficients of soft divergences (anomalous dimensions)?
» Simpler subtraction schemes for NNLO or NNNLO calculations?
« We have a factorized expression which agrees in all soft or collinear limits



